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bstract

In this study, the multiple scattering of thermal waves and temperature distribution resulting from a subsurface sphere in a semi-infinite
xponentially graded material are investigated, and the analytical expression of the temperature at the surface of the graded material is obtained.
on-Fourier heat conduction equation is applied to solve the temperature at the surface, and the image method is used to satisfy the semi-infinite
oundary condition of graded material. The thermal wave fields are expressed using wave function expansion method, and the expanded mode
oefficients are determined by satisfying the boundary condition of the sphere. According to the wave equation of heat conduction, a general

olution of scattered thermal waves is presented for the first time. The temperature distribution and phase difference at the surface of the semi-
nfinite material with different parameters are graphically presented. Analyses show that the hyperbolic heat conduction equation cannot be regarded
s a continuation of the parabolic heat conduction equation at very short time scale. The effects of the incident wave number, the structural and
hysical parameters on the distribution of temperature and phase difference in the semi-infinite material are also examined.

2006 Elsevier B.V. All rights reserved.
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. Introduction

The classical Fourier’s law is quite accurate for most com-
on engineering situations. However, for situations involving

ery short times, Fourier’s law noticeably breaks down. So, non-
ourier heat conduction law was developed. The wave models,
hich can describe the relaxation behavior of heat conduction,

re the modification for classical theory of Fourier heat con-
uction. When the equations of heat conduction and energy are
ncorporated, the hyperbolic equation of heat conduction can be
btained. In many cases (e.g., laser heating, multilayer insulation
t the low temperature, superconducting film, etc.), non-Fourier
eat conduction is encountered. When the wavelength of the
eat carrier is comparable to the characteristic length of struc-
ures, or the time of heat conduction is not equal to the time for

eaching thermal equilibrium, the heat conduction in structures
xpresses wave nature. In the situation involving temperature
ear absolute zero or extreme thermal gradients, the concept of

∗ Corresponding author. Tel.: +86 451 86410268.
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he complex heat capacity can be used to describe an internal
elaxation in the system, as well as the non-Fourier heat con-
uction law. But the latter can be used only for the case of the
xponential relaxation when the both approaches are equivalent
1–3].

Functionally graded materials (FGMs) are a new generation
f engineering materials wherein the micro-structural details
re spatially varied through non-uniform distributions of the
einforcement phases, by using reinforcements with different
roperties, sizes and shapes, as well as by interchanging the
oles of reinforcement and matrix phases in a continuous man-
er [4]. For example, ceramics are useful in high strength and
emperature applications. However, they suffer from low tough-
ess. In an ideal FGM, they may be combined in an intelligent
anner with a metal of high toughness to raise the toughness of

he combination.
Computational analysis is an effective method for design-

ng specified FGM systems and understanding the behavior of

GMs. For homogeneous medium, boundary integral equation
ethods have been applied extensively. However, the formu-

ation of integral equations relies on the fundamental solution
f partial differential equation. Application of the boundary

mailto:fangxueqian@163.com
dx.doi.org/10.1016/j.tca.2006.11.014
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For simplicity, the density of materials and relaxation time
are assumed to be constants. The shear modulus and density
of materials vary continuously, and the same non-homogeneity
X.Q. Fang, C. Hu / Thermoc

ntegral technique has therefore been limited to homogeneous
r piecewise homogeneous media. Applying boundary integral
quation methods, Gray et al. investigated the heat conduction of
xponentially graded materials, Green’s functions in free space
ere derived, the closed-form solution for steady-state diffusion

quation was also obtained in two and three dimension spaces
5].

Using the superfluid liquid helium, Peshkov firstly discov-
red the existence of thermal waves in the medium when the
emperature is close to absolute zero degree in experiment [6].
ubsequently, C. Cattaneo proposed the model of thermal waves
7]. Qiu and Tien studied the microscopic radiation during
he short-pulse laser heating in solid materials [8]. Based on
ual-phase-lag concept, Tzou constructed a universal constitu-
ive equation between the heat flux vector and the temperature
radient. He considered the interactions between waves and
honon–electron as the diffusion of phonon, and the experiment
as also presented to prove the lagging behavior of thermal wave
ropagation [9]. Kvrner and Bergmann pointed out that with the
dvent of ultrashort pulse lasers, because the time of material
rocessing is relatively short, and the influence of thermal waves
uring the heat conduction becomes prominent, the hyperbolic
quation of heat conduction should be employed to compute and
nalyze this problem [10].

Base on the equation of thermal diffusion, Terron et al. studied
he multiple scattering of thermal waves between the subsurface
ylinder and the material surface, theoretical analysis and exper-
mental investigation were carried out, and the general solution
or the multiple scattering of thermal waves was also presented
11]. Applying the diffusive model of heat conduction, Thibaud
t al. presented the theoretical and numerical results for the
ultiple scattering of a diffusive wave resulting from an object

mbedded in a semi-infinite substrate [12]. Terron et al. gave us
he analyses and experiment of the multiple scattering of a plane
hermal wave between a two-layer subsurface cylinder and the

aterial surface [13]. Salazar and Sanchez-Lavega presented
general solution for the ac temperature field of an opaque
aterial containing aligned subsurface cylinders produced by a
odulated line illumination [14].
Different physical parameters and boundary conditions of

ubsurface have great effects on the propagation and diffusion
f thermal waves, which is directly presented by the temper-
ture field at the surface of materials. By using the detecting
ystem of thermal waves and measuring the changes of temper-
ture at the surface of materials, the internal structures can be
btained for purpose of detection and inspection [13]. The non-
estructive detection technology is of considerable importance
n the research of designing new materials in aerospace engi-
eering, and improving the reliability of industrial products and
acilities.

To the author’s knowledge, up to present time the physical
odels employed to determine the temperature distribution of

he sample with defects in infrared thermal imaging are still

ased on the classical Fourier heat conduction law. Namely,
arabolic equation of heat diffusion is often applied to com-
ute and analyze this problem [15]. The main objective of
his paper is to investigate the multiple scattering of thermal

F
s
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aves and temperature distribution resulting from an embedded
phere defect in a semi-infinite exponentially graded mate-
ial. The thermal waves are generated at the surface of opaque
aterial by a modulated optical beam. The sphere defect is

aken as a sphere cavity under thermal insulation condition.
ased on non-Fourier heat conduction law, the hyperbolic
quation of heat conduction is solved by employing wave func-
ion expansion method. The temperature distribution and phase
ifference at the surface of the semi-infinite material under dif-
erent parameters are graphically presented. The effects of the
ncident wave number, the structural and physical parameters
n the temperature distribution and phase difference are also
xamined.

. Wave motion equation of thermal waves and its
olution

Consider a semi-infinite exponentially graded material, as
epicted in Fig. 1. A thermally insulated sphere defect with adi-
batic surface of radius a is embedded in the materials. The
epth of the center of sphere defect beneath the surface is b. Let
n ultrashort laser pulse modulated at a frequency of f hit at the
urface of heated materials along the z direction. The thermal
aves are generated in the materials. Based on the non-Fourier

aw of heat conduction, the governing equation of temperature
n the materials, as utilized in previous investigation [16], can
e written as

· (λ∇T ) = ρcp

(
∂T

∂t
+ τ

∂2T

∂t2

)
(1)

here � is the Hamilton operator and �= i∂/∂x + j∂/∂y + k∂/∂z,
, cp and ρ are the thermal conductivity, the specific heat at
onstant pressure and the density, respectively, T the temperature
n graded materials, and τ is the exponential relaxation time
eeded for reaching new equilibrium. It should be noted that the
xponential relaxation time is a thermodynamic property of the
ig. 1. Geometry and coordinates used to study the multiple scattering of a
ubsurface sphere embedded in a semi-infinite graded material.
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arameter is used to describe the variation of them, i.e.,

= Re[λ0 exp(2σz)], cp = Re[cp0 exp(2σz)], (2)

ere λ0, cp0 are complex parameters, and denote the complex
hermal conductivity and the specific heat at a constant pressure
hen z = 0, respectively. σ is the spatial variational exponent of
hysical parameters, and denotes the nonhomogeneous parame-
er of materials. It may be a complex variable, i.e., σ = σ1 + iσ2.

Substituting Eqs. (2) into (1), the following equation can be
btained:

2T + 2σ
∂T

∂z
= 1

c2

∂2T

∂t2 + 1

D

∂T

∂t
, (3)

here D (D = λ/ρcp) is the thermal diffusivity, and c is the prop-
gating speed of thermal waves at high frequencies, c = √

D/τ.
ccording to Eq. (2), the thermal diffusivity of graded materials

s a constant.
The solution of periodic steady state is investigated. Sup-

ose that T = T0 + Re[ϑ exp(−iωt)], the following equation can
e derived in terms of Eq. (3):

2ϑ + 2σ
∂ϑ

∂z
+

(
ω2

c2 + iω

D

)
ϑ = 0, (4)

here T0 is the average temperature, and ω is the incident fre-
uency with ω = 2πf.

Thus, the solution of Eq. (4) takes the following form:

= exp(−σz)u(x, y, z), (5)

n which the function u(x, y ,z) should satisfy the following
quation:

2u + κ2u = 0, (6)

here κ is the wave number of complex variables, κ =
(ω2/c2) + (iω/D) − σ2)

1/2 = α + iβ, and α, β are the wave
umber and absorption coefficient of thermal waves, respec-
ively. Without loss of generality, after normalizing and taking
> 0, β > 0, one can obtain:

=

√√√√√1

2

⎧⎨
⎩

√[
ω2

c2 − (σ2
1 − σ2

2 )

]2

+
( ω

D
− 2σ1σ2

)2 + ω2

c2 − (

=

√√√√√1

2

⎧⎨
⎩

√
k2 − (σ2

1 − σ2
2 )

2 + 4

(
1

μ2 − σ1σ2

)2

+ [k2 − (σ2
1

=

√√√√√1

2

⎧⎨
⎩

√[
ω2

c2 − (σ2
1 − σ2

2 )

]2

+
( ω

D
− 2σ1σ2

)2 − ω2

c2 + (
=

√√√√√1

2

⎧⎨
⎩

√
[k2 − (σ2

1 − σ2
2 )]

2 + 4

(
1

μ2 − σ1σ2

)2

− [k2 − (σ2
1 −
a Acta 453 (2007) 128–135

σ2
2 )

⎫⎬
⎭

2
2 )]

⎫⎬
⎭ (7)

ere k is the wave number of thermal waves without diffusive
ffect.

Note that when the propagation speed of thermal waves is
→ ∞ and the nonhomogeneous parameter is σ → 0, one can
btain α → √

(1/2)(ω/D) = 1/μ and β → √
(1/2)(ω/D) =

/μ. So, the wave number of thermal waves is κ = α + iβ →
1 + i)(1/μ). By this way, the hyperbolic equation of heat con-
uction in graded materials can be reduced to the classical
quation of Fourier heat conduction.

According to Eqs. (6)–(8), one can see that in FGMs there
xists the wave motion with the form of ϑ e−iωt = ϑ0 exp[−(β +
)z] ei(αz−ωt) = ϑ0 exp[−(β + σ1)z] ei[(α−σ2z−ωt)]. The wave
odes denote the propagating thermal waves with its amplitude

f vibration attenuating in the z direction. The existing condition
f the stable propagating waves which propagate in the positive
direction is σ1 > β and σ2 < α.

The general solution of the scattered field of thermal waves
n graded materials determined by Eq. (4) can be described as
17,18]

= e−σz
∞∑

n=0

n∑
m=−n

Amnh
(1)
n (κr)Pm

n (cos θ) eimϕ, (9)

here h(1)
n (·) is the spherical Hankel function, h(1)

n (x) =
π/2xH

(1)
n+(1/2)(x), H (1)

n (·) is the Hankel function of the first
ind, Anm are the mode coefficients resulting from the subsurface
phere defect, and are determined by the boundary conditions,
m
n (·) is the associated Legendre polynomial, and Pm

n (x) =
1/2nn!)(1 − x2)

m/2
(dm+n/dxm+n)(x2 − 1)

n
. Note that the

emperature is independent of ϕ due to the symmetry, so it
s suppressed in all subsequent representations for notational
onvenience.

. The incidence of thermal waves and total wave field

Thermal waves can be generated at the surface of graded
aterials by the laser beam with modulated ultrashort pulse.
et a periodic stable thermal wave propagate along the positive
σ2
2 )]

⎫⎬
⎭ (8)
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direction. The incident plane thermal wave can be expanded in
series of spherical waves by using spherical Bessel functions
f the first kind jn(·) and the Legendre functions Pn(·), i.e. [19]

(i)
1 = ϑ0 exp(iκb) exp(−σz) exp[i(κz − ωt)]

= ϑ0 exp(iκb) exp(−σz)
∞∑

n=0

(2n + 1)in

×jn(κr)Pn(cos θ) exp(−iωt) (10)

here ϑ is the temperature amplitude of incident thermal waves,
nd κ is the wave number of incident waves. Note that Pn(x) =
0
n (x) = (1/2nn!)(dn/dxn)(x2 − 1)

n
.

The reflected waves at the surface of the semi-infinite material
an be described by the virtual image. For the image sphere, the
hermal waves propagate in the negative z′ direction, and are
escribed as
(i)
2 = ϑ0 exp(iκb) exp(σz′) exp[−i(κz′ + ωt)]

= ϑ0 exp(iκb) exp(σz′)
∞∑

n=0

(2n + 1)i−n

×jn(κr′)Pn(cos θ′) exp(−iωt) (11)

In the local spherical coordinate system (r, θ, ϕ) of the real
phere, the scattered field of thermal waves resulting from the
ubsurface sphere can be described as

(s)
1 = exp(−σr cos θ)

∞∑
n=0

A1
nh

(1)
n (κr)Pn(cos θ) exp(−iωt). (12)

Likewise, in the local spherical polar coordinate (r′, θ′, ϕ′)
f the image sphere, the scattered field resulting from the image
phere can be written as

(s)
2 = exp(σz′)

∞∑
n=0

B1
nh

(1)
n (κr′)Pn(cos θ′)exp(−iωt)

= exp(σr′ cos θ′)
∞∑

n=0

(−1)nA1
nh

(1)
n (κr′)Pn(cos θ′) exp(−iωt),

(13)

here Al
n, Bl

n, (l = 1, 2, . . . , ∞) are the lth mode coefficients
f thermal waves of the real and image spheres, respectively.
hey can be determined by satisfying the boundary condition of

he subsurface sphere.
Thus, the total wave field in graded materials is taken to be

he superposition of the incident waves, the scattered waves and
he reflected waves at the surface, i.e.,

= ϑ
(i)
1 + ϑ

(s)
1 + ϑ

(s)
2 . (14)

In this paper, the case that the boundary condition of the sub-
urface sphere is adiabatic is studied. By using the temperature

unction, it can be expressed as the following form:

∂ϑ

∂n

∣∣∣∣
a

= − ∂ϑ

∂r

∣∣∣∣
a

= 0, (15)

e

∑
n

a Acta 453 (2007) 128–135 131

ere n denotes the out normal of the boundary of subsurface
phere.

. Determinant of mode coefficients and solution for
emperature at the surface

By satisfying the boundary condition of the subsurface
phere, the mode coefficients of thermal waves can be
etermined. Substituting Eqs. (14) into (15), the following
xpressions can be derived:

∞∑
=−∞

El
nX

l
n = El, l = 1, 2, . . . , ∞, (16)

here

1
n = exp(−σa cos θ){σ cos θh(1)

n (κa) − κ

2n + 1
[nh

(1)
n−1(κa)

− (n + 1)h(1)
n+1(κa)]}Pn(cos θ), (17)

1 = −ϑ0(σ − iκ) cos θ exp(iκb) exp[−(σ − iκ)a cos θ], (18)

2
n = exp(−σa cos θ′){σ cos θ′h(1)

n (κa) − κ

2n + 1
[nh

(1)
n−1(κa)

−(n + 1)h(1)
n+1(κa)]}Pn(cos θ′), (19)

2 =
∞∑

n=0

(−1)nA1
n exp(σr′ cos θ′){σ cos θ′h(1)

n (κr′)

+ κ

2n + 1
[nh

(1)
n−1(κr′) − (n + 1)h(1)

n+1(κr′)]}Pn(cos θ′),

(20)

l
n = exp(−σa cos θ){σ cos θ h(1)

n (κa)

− κ

2n + 1
[nh

(1)
n−1(κa) − (n + 1)h(1)

n+1(κa)]}Pn(cos θ),

(21)

l =
∞∑

n=0

(−1)nAl−1
n exp(σr′ cos θ′){σ cos θ′h(1)

n (κr′)

+ κ

2n + 1
[nh

(1)
n−1(κr′) − (n + 1)h(1)

n+1(κr′)]}Pn(cos θ′),

(22)

with r′ = √
a2 + 4b2 + 4ab cos θ, θ′ = arc cos[(2b +

cos θ)/r′], Xl
n = Al

n.
Multiplying by Pj(cos θ) sin θ on both sides of Eq. (16) and

ntegrating from 0 to π, yield the following infinite algebraic

quations:

∞

−0

El
njX

l
n = El

j, j = n = 0, 1, 2, . . . , ∞, (23)
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illustrated in Fig. 3. It can be seen that the phase difference first
increase with y, then reaches the maximum and approaches to
zero as y further increases. Note that the maximum phase dif-
ference is near the edge of the embedded sphere. The variation
32 X.Q. Fang, C. Hu / Thermoc

here

l
nj = 2j + 1

2

∫ π

0
El

nPj(cos θ) sin θ dθ

= 2j + 1

2

∫ 1

−1
El

nPj(x) dx, (24)

l
j = 2j + 1

2

∫ π

0
ElPj(cos θ) sin θ dθ

= 2j + 1

2

∫ 1

−1
ElPj(x) dx. (25)

Eq. (23) are the infinite algebraic equations determining the
ode coefficients of thermal waves.
So, the expression of the temperature distribution at the sur-

ace of graded materials can be expressed as

ϑ = ϑ0 exp(iκb) exp(−σz) exp(iκz) exp(−iωt)

+exp(−σz)
∞∑
l=1

∞∑
n=0

Al
nh

(1)
n (κr)Pn(cos θ) exp(−iωt)

+ exp(σz′)
∞∑
l=1

∞∑
n=0

(−1)nAl
nh

(1)
n (κr′)Pn(cos θ′) exp(−iωt),

(26)

ere θ = π − arc cos[(r sin θ′)/b], y′ = y = r sin θ sin ϕ,
′ = arc cos[(r sin θ)/b], and y = 0–4.

If there exists defect in the materials, multiple scattering of
hermal waves between the subsurface sphere and the surface
ill occur, which influences the distribution of temperature at

he surface of graded materials. Periodic heating will bring about
he temperature variation inside the materials. By making using
f the variation of temperature amplitude and the phase differ-
nce resulting from the defect, imaging of thermal waves can be
btained. By measuring the temperature variation at the surface
f materials, the defect embedded beneath the surface can be
stimated and evaluated.

. Numerical examples and discussions

In the following analysis it is convenient to make the vari-
bles dimensionless. To accomplish this step, we may introduce

αa =

√√√√√
√√√√1

4
[(ka)2 − (σ1a)2 + (σ2a)2]

2

βa =

√√√√√
√√√√1

4
[(ka)2 − (σ1a)2 + (σ2a)2]

2

representative length scale a, where a is the radius of the
ubsurface sphere. The following dimensionless variables and
uantities have been chosen for computation: the wave num-
er of non-diffusive propagating waves is ka = 0.01–3.0, the

F
(

a Acta 453 (2007) 128–135

elative length of thermal diffusion is μ/a = 0.10–5.0, and the
eal and the imaginary parts of the nonhomogeneous parameter
re σ1a = 0.01–1.0 and σ2a = 0.01–1.0, respectively. The ratio of
mbedded depth is b/a = 1.1–3.0, and the ratio of temperature is
/ϑ0.

Thus, the dimensionless complex wave number κa = αa + iβa
s written as

a

μ

)2

− (σ1a)(σ2a)

]2

+ 1

2
[(ka)2 − (σ1a)2 + (σ2a)2]. (27)

a

μ

)2

− (σ1a)(σ2a)

]2

− 1

2
[(ka)2 − (σ1a)2 + (σ2a)2]. (28)

According to Eq. (26), the temperature and phase difference
t the surface of the semi-infinite exponentially graded material
an be obtained. Fig. 2 illustrates the temperature distribution
t the surface of the material with parameters: ka = 0, σ2 = 0,
/a = 0.5463, and b/a = 1.10, which corresponds to the case of
ure heat diffusion and the case without wave motion terms
n the equation of heat conduction in homogeneous materials.
rom Fig. 2, it can be seen that the computing results of the tem-
erature at the surface of the semi-infinite material show good
greements with those in the literature [15]. In this case, the
hermal diffusivity is given by D = 75 mm2/s, the radius of the
phere defect is a = 2.0 mm, the embedded depth is b = 2.2 mm.
t should be noted that the greater the relative length of ther-
al diffusion, the greater variation the temperatures, comparing
ith the classical theory of the heat conduction, display. At the

ocation of (0, 0, −b), the temperature reaches the maximum.
The phase difference at the surface of the semi-infinite mate-

ial with parameters: σ2a = 0, μ/a = 0.5463, ka = 0, b/a = 1.1 is
ig. 2. Temperature distribution at the surface of the semi-infinite material
σ2a = 0, ka = 0, μ/a = 0.5463, b/a = 1.1).
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/a = 0.5463, ka = 0, b/a = 1.1).

f phase difference with nonhomogeneous parameter is great at
he position near the center of the subsurface sphere defect. One
an also see that the maximum phase difference increases with
he increase of nonhomogeneous parameter.

The temperature distribution at the surface of the material
ith parameters: σ2a = 0, b/a = 1.1, ka = 0, μ/a = 0.25 is depicted

n Fig. 4. The numerical results show that when the wave num-
er is comparatively little (e.g., ka < 0.5), the wave nature of heat
onduction is weaker. The computing results of temperature are
lmost the same as those obtained by using the classical equation
f heat conduction. So, the equation of thermal diffusion can be
mployed in engineering. When the wave number is compara-
ively large (e.g., ka > 0.5), the wave nature of heat conduction
egins to have great effect on the amplitude of temperature.

The phase difference at the surface of the semi-infinite mate-

ial with parameters: σ2a = 0, μ/a = 0.25, ka = 0, b/a = 1.1 is
llustrated in Fig. 5. In contrast to Fig. 3, it can be seen that
he maximum phase difference increases with the decrease of
/a, and its location also changes.

ig. 4. Temperature distribution at the surface of the semi-infinite material
σ2a = 0, μ/a = 0.25, ka = 0, b/a = 1.1).
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ig. 5. Phase difference at the surface of the semi-infinite material (σ2a = 0,
/a = 0.25, ka = 0, b/a = 1.1).

The temperature distribution at the surface of the mate-
ial with parameters: σ1a = 0.5, σ2a = 0, b/a = 1.1, μ/a = 0.5 is
epicted in Fig. 6. As can be seen in Fig. 6, only when the
elative length of thermal diffusion is comparatively little and
he wave number ka is comparatively large, the incident wave
umber has great effect on the temperature distribution. That
s to say, when the length of thermal diffusion in materials is
omparatively little or the characteristic dimension of defect is
omparatively great, the wave nature in heat conduction can be
gnored.

The phase difference at the surface of the semi-infinite mate-
ial with parameters: σ1a = 0.5, σ2a = 0, μ/a = 0.5, b/a = 1.1, is
llustrated in Fig. 7. It can be seen that the maximum phase
ifference increases with the increase of dimensionless wave
umber. The variation of phase difference with dimensionless
ave number is great at the position near the surface of the
phere defect.
Shown in Fig. 8 is the temperature distribution at the surface

f the material with parameters: σ1a = −0.5, σ2a = 0, μ/a = 0.5,

ig. 6. Temperature distribution at the surface of the semi-infinite material
σ1a = 0.5, σ2a = 0, b/a = 1.1).
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Fig. 9. Maximum temperature at the surface as a function of embedded depth
(σ1a = 0.5, σ2a = 0, μ/a = 0.5).
ig. 7. Phase difference at the surface of the semi-infinite material (σ1a = 0.5,

2a = 0, μ/a = 0.5, b/a = 1.1).

/a = 1.1. According to Fig. 8, when the embedded depth is com-
aratively great, the variational amplitude of temperature is little.
t is worth noting that when the wave number ka is compara-
ively small, the influence of wave nature in heat conduction is
eaker. Results for effect of dimensionless wave number on the
aximum temperature as a function of the embedded depth are

resented in Fig. 9. It can be seen that when the diffusive length is
omparatively great or the dimension of defect is comparatively
ittle, the wave nature of thermal waves has great effect on the

aximum temperature. If the wave number of heat conduction
s comparatively large, or the frequency is comparatively high,
he wave nature of thermal waves has the property of particle.
t is also clear that the effect of dimensionless wave number
n the maximum temperature is greater when the value of b/a
s near 1.5. If the value of b/a is greater than 3.0, the effect of

imensionless wave number tends to be vanish.

The temperature distribution at the surface of the material
s a function of dimensionless wave number is illustrated in
igs. 10 and 11. It is shown in Figs. 10 and 11 that when

ig. 8. Temperature distribution at the surface of the semi-infinite material
σ1a = 0.5, σ2a = 0, μ/a = 0.5, b/a = 1.1).

Fig. 10. Maximum temperature at the surface as a function of wave number
(σ1a = 0.5, σ2a = 0, b/a = 1.1).

Fig. 11. Maximum temperature at the surface as function of embedded depth
(σ1a = −0.5, σ2a = 0, b/a = 1.1).
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ig. 12. Maximum temperature at the surface of materials as a function of
onhomogeneous parameter (b/a = 1.1, ka = 1.0, σ2 = 0).

he nonhomogeneous parameter of the FGMs is positive, and
he wave number is comparatively small, the wave nature of
eat conduction has great effects on the distribution of tempera-
ure. Conversely, if the wave number is comparatively large, the
ffects of wave nature of heat conduction on the distribution of
emperature tend to vanish. The maximum temperature distri-
ution on the surface of the semi-infinite material as a function
f nonhomogeneous parameter is illustrated in Fig. 12. It can be
een from Fig. 12 that the maximum amplitude of temperature on
he surface of the material increases with the increase of the non-
omogeneous parameter. The maximum amplitude increases
reatly when the nonhomogeneous parameter of FGMs varies
rom the negative to positive value. The variation of maximum
mplitude with nonhomogeneous parameter increases with the
ncrease of μ/a.

. Conclusions

Applying the non-Fourier law of heat conduction, a theoret-
cal study of the thermal wave propagation in a semi-infinite

aterial with an embedded sphere defect has been considered,
general solution for the scattered field of thermal waves is

resented. In contrast to the results in previous literatures [15],
t can be concluded that the hyperbolic heat conduction equa-
ion cannot be regarded as a continuation of the parabolic heat
onduction equation at very short time scale. When the propagat-
ng speed of thermal waves is c → ∞ and the nonhomogeneous
arameter is σ → 0, the non-Fourier’s wave model of heat con-

uction in FGMs is reduced to the classical model of Fourier’s
hermal diffusion. In fact, the nonhomogenous parameter is
lso taken as complex variable, namely, σ2 �= 0. Without loss
f generality, we just investigate the thermal wave scattering

[

[
[

a Acta 453 (2007) 128–135 135

f subsurface sphere and give the numerical results when the
onhomogenous parameter is σ1 �= 0 σ2 = 0.

Through numerical examples, the distribution and varia-
ion of the temperature amplitude and phase difference under
ifferent parameters are analyzed. It has been found that on
he illuminated side of the embedded sphere defect, the vari-
tional amplitude of temperature reaches the maximum. When
he length of thermal diffusion is comparatively great, or the
haracteristic dimension of defect is comparatively little, the
ffect of the wave nature in thermal conduction on the tem-
erature becomes great. When the modulated frequency of
he incident thermal waves is greater than a certain number
that is relative to short waves), the wave nature of ther-
al waves begins to have great effects on the temperature

mplitude and phase difference. We can also find that the
aximum phase difference increases with the increase of non-

omogeneous parameter and dimensionless wave number. The
esults of this paper can provide theoretical foundation and
eferences for the detection of defects by using laser heat-
ng, the inverse problem, and the analysis of infrared thermal
maging.
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