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Abstract

In this study, the multiple scattering of thermal waves and temperature distribution resulting from a subsurface sphere in a semi-infinite
exponentially graded material are investigated, and the analytical expression of the temperature at the surface of the graded material is obtained.
Non-Fourier heat conduction equation is applied to solve the temperature at the surface, and the image method is used to satisfy the semi-infinite
boundary condition of graded material. The thermal wave fields are expressed using wave function expansion method, and the expanded mode
coefficients are determined by satisfying the boundary condition of the sphere. According to the wave equation of heat conduction, a general
solution of scattered thermal waves is presented for the first time. The temperature distribution and phase difference at the surface of the semi-
infinite material with different parameters are graphically presented. Analyses show that the hyperbolic heat conduction equation cannot be regarded
as a continuation of the parabolic heat conduction equation at very short time scale. The effects of the incident wave number, the structural and

physical parameters on the distribution of temperature and phase difference in the semi-infinite material are also examined.

© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The classical Fourier’s law is quite accurate for most com-
mon engineering situations. However, for situations involving
very short times, Fourier’s law noticeably breaks down. So, non-
Fourier heat conduction law was developed. The wave models,
which can describe the relaxation behavior of heat conduction,
are the modification for classical theory of Fourier heat con-
duction. When the equations of heat conduction and energy are
incorporated, the hyperbolic equation of heat conduction can be
obtained. In many cases (e.g., laser heating, multilayer insulation
at the low temperature, superconducting film, etc.), non-Fourier
heat conduction is encountered. When the wavelength of the
heat carrier is comparable to the characteristic length of struc-
tures, or the time of heat conduction is not equal to the time for
reaching thermal equilibrium, the heat conduction in structures
expresses wave nature. In the situation involving temperature
near absolute zero or extreme thermal gradients, the concept of
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the complex heat capacity can be used to describe an internal
relaxation in the system, as well as the non-Fourier heat con-
duction law. But the latter can be used only for the case of the
exponential relaxation when the both approaches are equivalent
[1-3].

Functionally graded materials (FGMSs) are a new generation
of engineering materials wherein the micro-structural details
are spatially varied through non-uniform distributions of the
reinforcement phases, by using reinforcements with different
properties, sizes and shapes, as well as by interchanging the
roles of reinforcement and matrix phases in a continuous man-
ner [4]. For example, ceramics are useful in high strength and
temperature applications. However, they suffer from low tough-
ness. In an ideal FGM, they may be combined in an intelligent
manner with a metal of high toughness to raise the toughness of
the combination.

Computational analysis is an effective method for design-
ing specified FGM systems and understanding the behavior of
FGMs. For homogeneous medium, boundary integral equation
methods have been applied extensively. However, the formu-
lation of integral equations relies on the fundamental solution
of partial differential equation. Application of the boundary
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integral technique has therefore been limited to homogeneous
or piecewise homogeneous media. Applying boundary integral
equation methods, Gray et al. investigated the heat conduction of
exponentially graded materials, Green’s functions in free space
were derived, the closed-form solution for steady-state diffusion
equation was also obtained in two and three dimension spaces
[5].

Using the superfluid liquid helium, Peshkov firstly discov-
ered the existence of thermal waves in the medium when the
temperature is close to absolute zero degree in experiment [6].
Subsequently, C. Cattaneo proposed the model of thermal waves
[7]. Qiu and Tien studied the microscopic radiation during
the short-pulse laser heating in solid materials [8]. Based on
dual-phase-lag concept, Tzou constructed a universal constitu-
tive equation between the heat flux vector and the temperature
gradient. He considered the interactions between waves and
phonon-electron as the diffusion of phonon, and the experiment
was also presented to prove the lagging behavior of thermal wave
propagation [9]. Kvrner and Bergmann pointed out that with the
advent of ultrashort pulse lasers, because the time of material
processing is relatively short, and the influence of thermal waves
during the heat conduction becomes prominent, the hyperbolic
equation of heat conduction should be employed to compute and
analyze this problem [10].

Base on the equation of thermal diffusion, Terron etal. studied
the multiple scattering of thermal waves between the subsurface
cylinder and the material surface, theoretical analysis and exper-
imental investigation were carried out, and the general solution
for the multiple scattering of thermal waves was also presented
[11]. Applying the diffusive model of heat conduction, Thibaud
et al. presented the theoretical and numerical results for the
multiple scattering of a diffusive wave resulting from an object
embedded in a semi-infinite substrate [12]. Terron et al. gave us
the analyses and experiment of the multiple scattering of a plane
thermal wave between a two-layer subsurface cylinder and the
material surface [13]. Salazar and Sanchez-Lavega presented
a general solution for the ac temperature field of an opaque
material containing aligned subsurface cylinders produced by a
modulated line illumination [14].

Different physical parameters and boundary conditions of
subsurface have great effects on the propagation and diffusion
of thermal waves, which is directly presented by the temper-
ature field at the surface of materials. By using the detecting
system of thermal waves and measuring the changes of temper-
ature at the surface of materials, the internal structures can be
obtained for purpose of detection and inspection [13]. The non-
destructive detection technology is of considerable importance
in the research of designing new materials in aerospace engi-
neering, and improving the reliability of industrial products and
facilities.

To the author’s knowledge, up to present time the physical
models employed to determine the temperature distribution of
the sample with defects in infrared thermal imaging are still
based on the classical Fourier heat conduction law. Namely,
parabolic equation of heat diffusion is often applied to com-
pute and analyze this problem [15]. The main objective of
this paper is to investigate the multiple scattering of thermal

waves and temperature distribution resulting from an embedded
sphere defect in a semi-infinite exponentially graded mate-
rial. The thermal waves are generated at the surface of opaque
material by a modulated optical beam. The sphere defect is
taken as a sphere cavity under thermal insulation condition.
Based on non-Fourier heat conduction law, the hyperbolic
equation of heat conduction is solved by employing wave func-
tion expansion method. The temperature distribution and phase
difference at the surface of the semi-infinite material under dif-
ferent parameters are graphically presented. The effects of the
incident wave number, the structural and physical parameters
on the temperature distribution and phase difference are also
examined.

2. Wave motion equation of thermal waves and its
solution

Consider a semi-infinite exponentially graded material, as
depicted in Fig. 1. A thermally insulated sphere defect with adi-
abatic surface of radius a is embedded in the materials. The
depth of the center of sphere defect beneath the surface is b. Let
an ultrashort laser pulse modulated at a frequency of f hit at the
surface of heated materials along the z direction. The thermal
waves are generated in the materials. Based on the non-Fourier
law of heat conduction, the governing equation of temperature
in the materials, as utilized in previous investigation [16], can
be written as

1)
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where v is the Hamilton operator and v =id/dx + jo/dy + ka/oz,
A, ¢p and p are the thermal conductivity, the specific heat at
constant pressure and the density, respectively, T'the temperature
in graded materials, and 7 is the exponential relaxation time
needed for reaching new equilibrium. It should be noted that the
exponential relaxation time is a thermodynamic property of the
materials.

For simplicity, the density of materials and relaxation time
are assumed to be constants. The shear modulus and density
of materials vary continuously, and the same non-homogeneity

xll

Fig. 1. Geometry and coordinates used to study the multiple scattering of a
subsurface sphere embedded in a semi-infinite graded material.
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parameter is used to describe the variation of them, i.e.,

A = Re[xo exp(207)], ¢p = Re[cpo exp(207)], (2)

Here Ao, cpo are complex parameters, and denote the complex
thermal conductivity and the specific heat at a constant pressure
when z =0, respectively. o is the spatial variational exponent of
physical parameters, and denotes the nonhomogeneous parame-
ter of materials. It may be a complex variable, i.e., 0 =01 + 0.

Substituting Egs. (2) into (1), the following equation can be
obtained:

aT 1 9°T 19T

VT +20 9z 2 a2 Do’ @)
where D (D = Al pcp) is the thermal diffusivity, and c is the prop-
agating speed of thermal waves at high frequencies, c = /D/.
According to Eq. (2), the thermal diffusivity of graded materials
is a constant.

The solution of periodic steady state is investigated. Sup-
pose that 7= Ty + Re[9 exp(—iwt?)], the following equation can
be derived in terms of Eq. (3):

v 0w
V9 4+20—+(—+— |9=0, 4
+Oaz+(c2+D) (4)

where Ty is the average temperature, and w is the incident fre-
quency with w = 2xf.
Thus, the solution of Eq. (4) takes the following form:

= exp(—oz)u(x, y, ), )
in which the function u(x, y ,z) should satisfy the following
equation:

V2u + k*u =0, (6)

where « is the wave number of complex variables, x =
(@?/c?) + (iw/ D) — 02)1/2 =a+iB, and «, B are the wave
number and absorption coefficient of thermal waves, respec-
tively. Without loss of generality, after normalizing and taking
a>0, g>0, one can obtain:

Here k is the wave number of thermal waves without diffusive
effect.

Note that when the propagation speed of thermal waves is
¢ — oo and the nonhomogeneous parameter is o — 0, one can
obtain o« — /(1/2)(w/D) =1/p and g — /(1/2)(w/D) =
1/u. So, the wave number of thermal waves is k = ¢ + i —
(1 4+ 9)(1/w). By this way, the hyperbolic equation of heat con-
duction in graded materials can be reduced to the classical
equation of Fourier heat conduction.

According to Egs. (6)—(8), one can see that in FGMs there
exists the wave motion with the form of 9 e " = ¥ exp[—(8 +
0)z] ei@z=o) = g exp[—(B + o1)z] ell@—o2z=eN] " The wave
modes denote the propagating thermal waves with its amplitude
of vibration attenuating in the z direction. The existing condition
of the stable propagating waves which propagate in the positive
z directionis o1 >pBand o2 <a.

The general solution of the scattered field of thermal waves
in graded materials determined by Eq. (4) can be described as
[17,18]

o]

n
P =e"%> Y Aunh{D(kr) P (cos0) e, 9)

n=0m=—n

where h () is the spherical Hankel function, »()(x) =
Jaj2xH. +(1 /@), HP(:) is the Hankel function of the first
kind, A, are the mode coefficients resulting from the subsurface
sphere defect, and are determined by the boundary conditions,
PI'(-) is the associated Legendre polynomial, and P)'(x) =
(1/2"n0)(L — x2)" 2 (@™ /dx+7)(x? — 1)". Note that the
temperature is independent of ¢ due to the symmetry, so it
is suppressed in all subsequent representations for notational
convenience.

3. The incidence of thermal waves and total wave field
Thermal waves can be generated at the surface of graded

materials by the laser beam with modulated ultrashort pulse.
Let a periodic stable thermal wave propagate along the positive

1 0)2 2 6()2
a= |5 \/LZ — (0% - )] <B — 20102> + Z - (02 — o3)

N -

2
— (0% - Gz) + 4<l N UlUZ) +[k2 = (0f - 03)] )

N =

022)

N =

2 w2
{ (ol 03)} + (% - 20102)2 -2 + (af —

2
[k2 (02 — o2 + 4(1 - alaz> K2 = (02 — o2)] @)



X.Q. Fang, C. Hu / Thermochimica Acta 453 (2007) 128—135 131

z direction. The incident plane thermal wave can be expanded in
a series of spherical waves by using spherical Bessel functions
of the first kind j,,(-) and the Legendre functions P,(-), i.e. [19]

9 = 99 exp(icb) exp(—oz) expli(kz — wr)]

= D exp(ixb) exp(—0z) > _(2n + 1)i"
n=0

X jn(kr) P, (cOS 6) exp(—iwr) (10)

where ¢ is the temperature amplitude of incident thermal waves,
and « is the wave number of incident waves. Note that P,(x) =
PO(x) = (1/2"n")(d" /dx™)(x® — 1)".

The reflected waves at the surface of the semi-infinite material
can be described by the virtual image. For the image sphere, the
thermal waves propagate in the negative 7' direction, and are
described as

90 = 9o exp(ixb) exp(oz’) exp[—i(kz’ + wi)]

o0
= D exp(ixb) exp(oz)> _(2n + 1)i ™"
n=0

X ju(kr’) P, (cos 0') exp(—iwt) (11)

In the local spherical coordinate system (7, 6, ¢) of the real
sphere, the scattered field of thermal waves resulting from the
subsurface sphere can be described as

o0
98 = exp(—or cos 0)> " Ash{D(kr) P (cos 6) exp(—iwr). (12)
n=0

Likewise, in the local spherical polar coordinate (v, ', ¢)
of the image sphere, the scattered field resulting from the image
sphere can be written as

o0
95 = exp(02) > B (kr') Py (cos 8')exp(—iwr)
n=0

o0
= exp(or’ cos )Y (—1)" ALh{) (kr') P, (cos 0) exp(—iwr),
=0
! (13)
where AL, Bl (1=1,2,...,00) are the ith mode coefficients
of thermal waves of the real and image spheres, respectively.
They can be determined by satisfying the boundary condition of
the subsurface sphere.
Thus, the total wave field in graded materials is taken to be
the superposition of the incident waves, the scattered waves and
the reflected waves at the surface, i.e.,

9 =00 + 0P + 09 (14)

In this paper, the case that the boundary condition of the sub-
surface sphere is adiabatic is studied. By using the temperature
function, it can be expressed as the following form:

% v
on or

=0, (15)

a

a

Here n denotes the out normal of the boundary of subsurface
sphere.

4. Determinant of mode coefficients and solution for
temperature at the surface

By satisfying the boundary condition of the subsurface
sphere, the mode coefficients of thermal waves can be
determined. Substituting Eqgs. (14) into (15), the following
expressions can be derived:

o0
Y EX,=E, 1=12,... 00, (16)
n=—0oo
where
1 1 K 1
E, = exp(—oacosb){c cos Gh,(l )(Ka) o 1[nh£31(/ca)
— (n+ AY | (ka)]} Pu(cos 6), (17)

El= —vo(o — ik) cos O exp(ixb) exp[—(o — ix)acosd], (18)

2 77 (1 K 1
E2 = exp(—oa cos6'){o cos 6'hY (ka) — m[nhgzl(lca)

—(n + DAY | (<a)]} P (cos ©), (19)

(0.¢]
E? = Z(_l)"z‘\,% exp(or’ cos 0'){o cos 6D (icr')
n=0

+2nL+1[”h;(1121(K”/) _ (n —+ l)hEl]:Q)—l(Kr/)]}Pn(COS 9/)’
(20)

~

E! = exp(—oa cos 6){o cos 6 h\D(ka)
K

i [0t (ca) — (n + DAY (ca)]) Pa(cos 6),

(21)

o0
E'= Z(—l)"Affl exp(or’ cos &) {o cos &' R (ier')
n=0

K 1 0
+m[nh’gzl(/ﬁ"/) _ (I’l + 1)hf’L<|)»l(Kr/)]}Pn(COS 9/)’

22)

with — \/az + 4h2 + 4ab cosé, 0 — arc COS[(Zb i

acosh)/r'], X!, = AL,

Multiplying by P;j(cos 6)sin 6 on both sides of Eq. (16) and
integrating from O to 7, yield the following infinite algebraic
equations:

nj*n

o
Y ELX,=E;, j=n=012... 00, (23)
n—0
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where relative length of thermal diffusion is w/a=0.10-5.0, and the
1 2j+1 (7 _ real and the imaginary parts of the nonhomogeneous parameter
E,; = > / E, Pi(cosf)sin6dé areo1a=0.01-1.0and o2a = 0.01-1.0, respectively. The ratio of
0 embedded depth is b/a = 1.1-3.0, and the ratio of temperature is
2j+1 1 ¥/ .
=7 /_1 E, Pj(x) dx, (24) Thus, the dimensionless complex wave number ka = aa + iBa

is written as

- 2 _2
a= || 31607 ~ 0207 + 0 + | (£) = @00 | + Hl00F - (0207 + (). (2D

- 2 _2
S0 = @02 + 2P + | (4) =~ @on)| = Hl00F - @102 + (2L (29

Ba

piiq 7 According to Eq. (26), the temperature and phase difference

Ez] _ 4 + / El P;(cos0) sin0.do at the surfac_e of thg seml_—mflnlte exponentially grade_d m_aterlal
2 0 can be obtained. Fig. 2 illustrates the temperature distribution

2j+1 [ at the surface of the material with parameters: ka=0, o2 =0,

= / E’R,(x) dx. (25)  wnla=0.5463, and bla=1.10, which corresponds to the case of

2 -1 pure heat diffusion and the case without wave motion terms

o ] ] o in the equation of heat conduction in homogeneous materials.

Eq. (23) are the infinite algebraic equations determining the  From Fig. 2, it can be seen that the computing results of the tem-

mode coefficients of thermal waves. o perature at the surface of the semi-infinite material show good
So, the expression of the temperature distribution at the sur-  agreements with those in the literature [15]. In this case, the
face of graded materials can be expressed as thermal diffusivity is given by D =75mm?/s, the radius of the

sphere defect is a =2.0 mm, the embedded depth is »=2.2 mm.

It should be noted that the greater the relative length of ther-
e 1,1 . mal diffusion, the greater variation the temperatures, comparing

+exp(=02)) > A, ki r) Pa(cos ) exp(—ier) with the classical theory of the heat conduction, display. At the
[=1n=0 location of (0, 0, —b), the temperature reaches the maximum.

e Al () , ) The phase difference at the surface of the semi-infinite mate-
+exp(0) Y > (=1)" Ay (D er) Pa(cos &) exp(—iw), rial with parameters: ooa =0, p/a=0.5463, ka=0, bla=1.1 is

¥ = 9o exp(ixb) exp(—oz) exp(ixz) exp(—iwt)

=1n=0 (26) illustrated in Fig. 3. It can be seen that the phase difference first
increase with y, then reaches the maximum and approaches to
Here 0=m —arccos[(rsine’)/b], y =y=rsinésing,  zero asy further increases. Note that the maximum phase dif-
¢’ =arc cos[(rsin 6)/b], and y = 0-4. ference is near the edge of the embedded sphere. The variation
If there exists defect in the materials, multiple scattering of
thermal waves between the subsurface sphere and the surface 5.5 _ ‘ _ . ‘
will occur, which influences the distribution of temperature at gl Ga: 1—1.0,2—0.5; 3—0.0;
the surface of graded materials. Periodic heating will bring about ' 4—0.5; 5—1.0
the temperature variation inside the materials. By making using 45 .
of the variation of temperature amplitude and the phase differ- Z 40/ |
ence resulting from the defect, imaging of thermal waves can be £
obtained. By measuring the temperature variation at the surface g 280 ’
of materials, the defect embedded beneath the surface can be 2 30¢ .
estimated and evaluated. = g |
E 20t 1
5. Numerical examples and discussions 2
15 1
In the following analysis it is convenient to make the vari- 10l
ables dimensionless. To accomplish this step, we may introduce - . . . ‘ . . .
a representative length scale a, where « is the radius of the o 05 10 15 20 25 30 35 40
subsurface sphere. The following dimensionless variables and Y
quantities have been chosen for computation: the wave num-  Fig 2. Temperature distribution at the surface of the semi-infinite material

ber of non-diffusive propagating waves is ka=0.01-3.0, the (02a=0, ka=0, ula=0.5463, bla=1.1).
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0.8 T T T
1—1.0; 2—0.5; 3—0.0;
4—-0.5; 5—-1.0
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0.7t

Phase difference

,01 1 1 1 1 1 1 1
0 0.5 1.0 1.5 20 25 3.0 35 4.0

¥

Fig. 3. Phase difference at the surface of the semi-infinite material (o2a=0,
ula=0.5463, ka=0, bla=1.1).

of phase difference with nonhomogeneous parameter is great at
the position near the center of the subsurface sphere defect. One
can also see that the maximum phase difference increases with
the increase of nonhomogeneous parameter.

The temperature distribution at the surface of the material
with parameters: 62a =0, bla=1.1, ka=0, ula=0.25is depicted
in Fig. 4. The numerical results show that when the wave num-
ber is comparatively little (e.g., ka < 0.5), the wave nature of heat
conduction is weaker. The computing results of temperature are
almost the same as those obtained by using the classical equation
of heat conduction. So, the equation of thermal diffusion can be
employed in engineering. When the wave number is compara-
tively large (e.g., ka>0.5), the wave nature of heat conduction
begins to have great effect on the amplitude of temperature.

The phase difference at the surface of the semi-infinite mate-
rial with parameters: o2a=0, ula=0.25, ka=0, bla=1.1 is
illustrated in Fig. 5. In contrast to Fig. 3, it can be seen that
the maximum phase difference increases with the decrease of
wula, and its location also changes.

0.9 T T T :
oa: 1—1.0;2—0.5; 3—0.0;
4—-0.5; 5—-1.0

o
~
T

o
w
T

Phase difference

-0.1 1 L 1 L 1 1 1
0 0.5 1.0 1.5 20 2.5 3.0 3.5 4.0

v

Fig. 5. Phase difference at the surface of the semi-infinite material (c2a=0,
ula=0.25, ka=0, bla=1.1).

The temperature distribution at the surface of the mate-
rial with parameters: 61a=0.5, 62a=0, bla=1.1, ula=0.5 is
depicted in Fig. 6. As can be seen in Fig. 6, only when the
relative length of thermal diffusion is comparatively little and
the wave number ka is comparatively large, the incident wave
number has great effect on the temperature distribution. That
is to say, when the length of thermal diffusion in materials is
comparatively little or the characteristic dimension of defect is
comparatively great, the wave nature in heat conduction can be
ignored.

The phase difference at the surface of the semi-infinite mate-
rial with parameters: 61a=0.5, 02a=0, ula=0.5, bla=1.1, is
illustrated in Fig. 7. It can be seen that the maximum phase
difference increases with the increase of dimensionless wave
number. The variation of phase difference with dimensionless
wave number is great at the position near the surface of the
sphere defect.

Shown in Fig. 8 is the temperature distribution at the surface
of the material with parameters: o1a=—0.5, 62a=0, ula=0.5,

3.5 T T T

3.0

e
tn

20

Normalized temperature
o

-
o

gd:

1—1.0; 2—0.5; 3—0.0;
4—-0.5; 5—1.0

0.5 L 1 1
0

Fig. 4. Temperature distribution at the surface of the semi-infinite material

(02a=0, ula=0.25, ka=0, bla=1.1).

35 T T T T T T
ka : 1—0.1; 2—1.0;

3.0h 3—2.0; 4—3.0 |
[
= 25f .
&
v
g
2 20 R
=
L
|
£ 15} 1
53
Z

1.0F

0'50 2I5 3I0 3I,5 4.0

Fig. 6. Temperature distribution at the surface of the semi-infinite material

(061a=0.5, 02a=0, bla=1.1).



134 X.Q. Fang, C. Hu / Thermochimica Acta 453 (2007) 128—135

4 ka : 1—0.1; 2—1.0;
1.0 3—2.0; 4—3.0 '

Phase difference

02— 9% 10 15 20 25 30 35 40

Y

Fig. 7. Phase difference at the surface of the semi-infinite material (012 =0.5,
02a=0, ula=0.5, bla=1.1).

bla=1.1. According to Fig. 8, when the embedded depth is com-
paratively great, the variational amplitude of temperature is little.
It is worth noting that when the wave number ka is compara-
tively small, the influence of wave nature in heat conduction is
weaker. Results for effect of dimensionless wave number on the
maximum temperature as a function of the embedded depth are
presented in Fig. 9. It can be seen that when the diffusive length is
comparatively great or the dimension of defect is comparatively
little, the wave nature of thermal waves has great effect on the
maximum temperature. If the wave number of heat conduction
is comparatively large, or the frequency is comparatively high,
the wave nature of thermal waves has the property of particle.
It is also clear that the effect of dimensionless wave number
on the maximum temperature is greater when the value of b/a
is near 1.5. If the value of b/a is greater than 3.0, the effect of
dimensionless wave number tends to be vanish.

The temperature distribution at the surface of the material
as a function of dimensionless wave number is illustrated in
Figs. 10 and 11. It is shown in Figs. 10 and 11 that when

20 T T T T

ka : 1—0.1; 2—1.03
1.8 3—2.0; 4—3.0 1

Normalized temperature

0 0.5 1.0 1.5 20 25 3.0 3.5 4.0

Fig. 8. Temperature distribution at the surface of the semi-infinite material
(01a=0.5,02a=0, ula=0.5, bla=1.1).

3.5

n
LS} w
: T

—_
(&)}
T

Maximum temperature

e
13
:

Fig. 9. Maximum temperature at the surface as a function of embedded depth
(01a=0.5, 02a=0, ula=0.5).

1

10} : Hla:1—50; 2—2.0 -
gl 3—1.0; 4—05; |
" 5—0.1
g7l
-
2
g 5t
| ;
E af
”
<
= 3f
2_
1.
0 . : . . .
0 0.5 1 1.5 2 25 3

Fig. 10. Maximum temperature at the surface as a function of wave number
(01a=0.5,02a=0, bla=1.1).

25

Mla:1—50;,2—2.0;3—1.0
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s 2
3
g
L7
f=%
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g 1.5F
=1
g
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=

b y

5
- . , : , ‘
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Fig. 11. Maximum temperature at the surface as function of embedded depth
(01a=-0.5,02a=0, bla=1.1).
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Mla:1— 0.5,2— 025

Maximum temperature

oa

Fig. 12. Maximum temperature at the surface of materials as a function of
nonhomogeneous parameter (bla=1.1, ka=1.0, o2 =0).

the nonhomogeneous parameter of the FGMs is positive, and
the wave number is comparatively small, the wave nature of
heat conduction has great effects on the distribution of tempera-
ture. Conversely, if the wave number is comparatively large, the
effects of wave nature of heat conduction on the distribution of
temperature tend to vanish. The maximum temperature distri-
bution on the surface of the semi-infinite material as a function
of nonhomogeneous parameter is illustrated in Fig. 12. It can be
seen from Fig. 12 that the maximum amplitude of temperature on
the surface of the material increases with the increase of the non-
homogeneous parameter. The maximum amplitude increases
greatly when the nonhomogeneous parameter of FGMs varies
from the negative to positive value. The variation of maximum
amplitude with nonhomogeneous parameter increases with the
increase of u/a.

6. Conclusions

Applying the non-Fourier law of heat conduction, a theoret-
ical study of the thermal wave propagation in a semi-infinite
material with an embedded sphere defect has been considered,
a general solution for the scattered field of thermal waves is
presented. In contrast to the results in previous literatures [15],
it can be concluded that the hyperbolic heat conduction equa-
tion cannot be regarded as a continuation of the parabolic heat
conduction equation at very short time scale. When the propagat-
ing speed of thermal waves is ¢ — oo and the nonhomogeneous
parameter is o — 0, the non-Fourier’s wave model of heat con-
duction in FGMs is reduced to the classical model of Fourier’s
thermal diffusion. In fact, the nonhomogenous parameter is
also taken as complex variable, namely, o2 # 0. Without loss
of generality, we just investigate the thermal wave scattering

of subsurface sphere and give the numerical results when the
nonhomogenous parameter is 01 20 o2 =0.

Through numerical examples, the distribution and varia-
tion of the temperature amplitude and phase difference under
different parameters are analyzed. It has been found that on
the illuminated side of the embedded sphere defect, the vari-
ational amplitude of temperature reaches the maximum. When
the length of thermal diffusion is comparatively great, or the
characteristic dimension of defect is comparatively little, the
effect of the wave nature in thermal conduction on the tem-
perature becomes great. When the modulated frequency of
the incident thermal waves is greater than a certain number
(that is relative to short waves), the wave nature of ther-
mal waves begins to have great effects on the temperature
amplitude and phase difference. We can also find that the
maximum phase difference increases with the increase of non-
homogeneous parameter and dimensionless wave number. The
results of this paper can provide theoretical foundation and
references for the detection of defects by using laser heat-
ing, the inverse problem, and the analysis of infrared thermal
imaging.
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